Semester-wise distribution of B.Sc.(Ag.) courses

IInd Semester

S.No.	Course Title	Credit Hours	Course No.
1	Fundamentals of Crop Physiology	3 (2+1)	AG - 201
2	Fundamentals of Plant Biochemistry	3 (2+1)	AG - 202
3	Fundamentals of Entomology-I	3 (2+1)	AG - 203
4	Fundamentals of Agricultural Economics	2(1+1)	AG - 204
5	Principles of Organic Farming .	2 (1+1)	AG - 205
6	Fundamentals of Plant Pathology	4 (3+1)	AG - 206
7	Production Technology for Vegetables and Spices	2(1+1)	AG - 207
8	Fundamentals of Agricultural Extension Education	3 (2 + 1)	AG - 208
9	Food Processing and Safety Issues	3 (2+1)	AG - 209
10	Human Values & Ethics (Non Gradial)	1 (0+1)	AG - 210
TOTAL		26	

2 Sel

SEE WITH

1

BIOCHEMISTRY/PHYSIOLOGY/MICROBIOLOGY/ENVIRONMENTAL

Fundamentals of Crop Physiology

AG-201-3(2+1)

Theory

Introduction to crop physiology and its importance in Agriculture; Plant cell: an Overview; Diffusion and osmosis; Absorption of water, transpiration and Stomatal Physiology; Mineral nutrition of Plants: Functions and deficiency symptoms of nutrients, nutrient uptake mechanisms; Photosynthesis: Light and Dark reactions, C3, C4 and CAM plants; Respiration: Glycolysis, TCA cycle and electron transport chain; Fat Metabolism: Fatty acid synthesis and Breakdown; Plant growth regulators: Physiological roles and agricultural uses, Physiological aspects of growth and development of major crops: Growth analysis, Role of Physiological growth parameters in crop productivity.

Practical

Study of plant cells, structure and distribution of stomata, imbibitions, osmosis, plasmolysis, measurement of root pressure, rate of transpiration, Separation of photosynthetic pigments through paper chromatography, Rate of transpiration, photosynthesis, respiration, tissue test for mineral nutrients, estimation of relative water content, Measurement of photosynthetic CO2 assimilation by Infra Red Gas Analyser (IRGA).

Br

8-E

V.

BIOCHEMISTRY/PHYSIOLOGY/MICROBIOLOGY/ENVIRONMENTAL

Fundamentals of Plant Biochemistry

AG-202-3(2+1)

Theory

Importance of Biochemistry. Properties of Water, pH and Buffer. Carbohydrate: Importance and classification. Structures of Monosaccharides, Reducing and oxidizing properties of Monosaccharides, Mutarotation; Structure of Disaccharides and Poly saccharides. Lipid: Importance and classification; Structures and properties of fatty acids; storage lipids and membrane lipids. Proteins: Importance of proteins and classification; Structures, titration and zwitterions nature of amino acids; Structural organization of proteins. Enzymes: General properties; Classification; Mechanism of action; Michaelis & Menten and Line Weaver Burk equation & plots; Introduction to allosteric enzymes. Nucleic acids: Importance and classification; Structure of Nucleotides, A, B & Z DNA; RNA: Types and Secondary & Tertiary structure. Metabolism of carbohydrates: Glycolysis, TCA cycle, Glyoxylate cycle, Electron transport chain. Metabolism of lipids: Beta oxidation, Biosynthesis of fatty acids.

Practical

Preparation of solution, pH & buffers, Qualitative tests of carbohydrates and amino acids. Quantitative estimation of glucose/proteins. Titration methods for estimation of amino acids/ lipids, Effect of pH, temperature and substrate concentration on enzyme action, Paper chromatography, Monosaccharides. Estimation of Ca, Cao and CaCo3 in Hcl extract. Estimation of reducing and non Fiz W/ lmg reducing in cane sugar juice.

BIOCHEMISTRY/PHYSIOLOGY/MICROBIOLOGY/ENVIRONMENTAL

Fundamentals of Plant Biochemistry and Biotechnology

AG-202-3(2+1)

Theory

Importance of Biochemistry, Properties of Water, pH and Buffer, Carbohydrate: Importance and classification. Structures of Monosaccharides, Reducing and oxidizing properties of Monosaccharides, Mutarotation; Structure of Disaccharides and Poly saccharides! Lipid: Importance and classification; Structures and properties of fatty acids; storage lipids and membrane lipids. Proteins: Importance of proteins and classification; Structures, titration and zwitterions nature of amino acids; Structural organization of proteins. Enzymes: General properties; Classification; Mechanism of action; Michaelis & Menten and Line Weaver Burk equation & plots; Introduction to allosteric enzymes. Nucleic acids: Importance and classification; Structure of Nucleotides, A, B & Z DNA; RNA: Types and Secondary & Tertiary structure. Metabolism of carbohydrates: Glycolysis, TCA cycle, Glyoxylate cycle, Electron transport chain. Metabolism of lipids: Beta oxidation, Biosynthesis of fatty acids. Concepts and applications of plant biotechnology: Scope, organ culture, embryo culture, cell suspension culture, callus culture, anther culture, pollen culture and ovule culture and their applications; Micro-propagation methods; organogenesis and embryogenesis, Synthetic seeds and their significance; Embryo rescue and its significance; somatic hybridization and cybrids; Somaclonal variation and its use in crop improvement; cryo-preservation; Introduction to recombinant DNA methods: physical (Gene gun method), chemical (PEG mediated) and Agrobacterium mediated gene transfer methods; Transgenics and its importance in crop improvement; PCR techniques and its applications; RFLP, RAPD, SSR; Marker Assisted Breeding in crop improvement; Biotechnology regulations.

Practical

Preparation of solution, pH & buffers, Qualitative tests of carbohydrates and amino acids. Quantitative estimation of glucose/ proteins. Titration methods for estimation of amino acids/lipids, Effect of pH, temperature and substrate concentration on enzyme action, Paper chromatography/ TLC demonstration for separation of amino acids/ Monosaccharides. Sterilization techniques. Composition of various tissue culture media and preparation of stock solutions for MS nutrient medium. Callus induction from various explants. Micro-propagation, hardening and acclimatization. Demonstration on isolation of DNA. Demonstration of gel electrophoresis techniques and DNA finger printing.

72

Just hyl

Theory

Classification of phylum Arthropoda upto classes. Relationship of class Insecta with other classes of Arthropoda. Morphology: Structure and functions of insect cuticle and molting. Body segmentation. Structure of Head, thorax and abdomen. Structure and modifications of insect antennae, mouth parts, legs, Wing venation, modifications and wing coupling apparatus. Structure of male and female genital organ. Metamorphosis and diapause in insects. Types of larvae and pupae. Structure and functions of digestive, circulatory, excretory, respiratory, nervous, secretary (Endocrine) and reproductive system, in insects. Types of reproduction in insects. Major sensory organs like simple and compound eyes, chemoreceptor.

Systematics: Taxonomy –importance, history and development and binomial nomenclature. Definitions of Biotype, Sub-species, Species, Genus, Family and Order. Classification of class Insecta upto Orders, basic groups of present day insects with special emphasis to orders and families of Agricultural importance like Orthoptera: Acrididae, Dictyoptera: Mantidae, Odonata; Isoptera: Termitidae; Thysanoptera: Thripidae; Hemiptera: Pentatomidae, Coreidae, Cimicidae, Pyrrhocoridae, Lygaeidae, Cicadellidae, Delphacidae, Aphididae, Coccidae, Lophophidae, Aleurodidae, Pseudococcidae; Neuroptera: Chrysopidae; Lepidoptera: Pieridae, Papiloinidae, Noctuidae, Sphingidae, Pyralidae, Gelechiidae, Arctiidae, Saturnidae, Bombycidae; Coleoptera: Coccinellidae, Chrysomelidae, Cerambycidae, Curculionidae, Bruchidae, Scarabaeidae; Hymenoptera: Tenthridinidae, Apidae. Trichogrammatidae, Ichneumonidae, Braconidae, Chalcididae; Diptera: Cecidomyiidae, Tachinidae, Agromyziidae, Culicidae, Muscidae, Tephritidae.

Practical

Methods of collection and preservation of insects including immature stages; External features of Grasshopper/Blister beetle; Types of insect antennae, mouthparts and legs; Wing venation, types of wings and wing coupling apparatus. Types of insect larvae and pupae; Dissection of digestive system in insects (Grasshopper); Dissection of male and female reproductive systems in insects (Grasshopper); Study of characters of orders Orthoptera, Dictyoptera, Odonata, Isoptera, Thysanoptera, Hemiptera, Lepidoptera, Neuroptera, Coleoptera, Hymenoptera, Diptera and their families of agricultural importance. Insecticides and their formulations. Pesticide appliances and their maintenance. Sampling techniques for estimation of insect population and damage.

AGRICULTURAL ECONOMICS

Fundamentals of Agricultural Economics

AG-204-2(1+1)

Theory

Agricultural economics: meaning, definition, characteristics of agriculture, importance and its role in economic development. Agricultural planning and development in the country. Demand: meaning, law of demand, schedule and demand curve, determinants, utility theory; law of diminishing marginal utility, equi-marginal utility principle. Consumer's equilibrium and derivation of demand curve, concept of consumer surplus. Elasticity of demand: concept and measurement of price elasticity, income elasticity and cross elasticity. Production: process, creation of utility, factors of production, input output relationship. Laws of returns: Law of variable proportions and law of returns to scale. Cost: concepts, short run and long run cost curves. Supply, law of supply, schedule, supply curve, determinants of supply, elasticity of supply. Market structure: meaning and types of market, basic features of perfectly competitive and imperfect markets. Price determination under perfect competition; Concepts of rent, wage, interest and profit. National Income: Meaning and importance, circular flow, concepts of national income accounting and approaches to measurement, difficulties in measurement. Population: Importance, Malthusian and Optimum population theories, natural and socioeconomic determinants, current policies and programmes on population control. Money: Barter system of exchange and its problems, evolution, meaning and functions of money, classification of money, supply, general price index, inflation and deflation. Banking: Role in modern economy, types of banks, functions of commercial and central bank, credit creation policy. Agricultural and public finance: meaning, micro v/s macro finance, need for agricultural finance, public revenue and public expenditure.

Practicals

Study of demand supply curve and calculation of elasticities. Survey of function of some nationalized bank. Calculation of agri loan intreset of the formers.

D

J.S

Theory

Organic farming, principles and its scope in India; Initiatives taken by Government (central/ state), NGOs and other organizations for promotion of organic agriculture; Organic nutrient resources and its fortification; Restrictions to nutrient use in organic farming; Choice of crops and varieties in organic farming; Fundamentals of insect, pest, disease and weed management under organic mode of production; Certification process and standards of organic farming.

Practical

1

Visit of organic farms to study the various components and their utilization; Preparation of enrich compost, vermicompost, Indigenous technology knowledge (ITK) for nutrient, insect, pest disease and weed management; Cost of organic production system; Quality aspect, grading, packaging and handling.

Z

8-5

Wy My fin

Theory

Introduction: Importance of plant diseases, scope and objectives of Plant Pathology. History of Plant Pathology with special reference to Indian work. Terms and concepts in Plant Pathology. Pathogenesis. Causes / factors affecting disease development: disease triangle and tetrahedron and classification of plant diseases. Important plant pathogenic organisms, different groups: fungi, bacteria, fastidious vesicular bacteria, phytoplasmas, spiroplasmas, viruses, viroids, algae, protozoa, phanerogamic parasites and nematodes with examples of diseases caused by them. Diseases and symptoms due to abiotic causes. Fungi: general characters, definition of fungus, somatic structures, types of fungal thalli, fungal tissues, modifications of thallus, reproduction (asexual and sexual). Nomenclature, Binomial system of nomenclature, rules of nomenclature, classification of fungi. Key to divisions, sub-divisions, orders and classes. Bacteria and mollicutes: general morphological characters. Basic methods of classification and reproduction. Viruses: nature, structure, replication and transmission. Study of phanerogamic plant parasites. Epidemiology: Factors affecting disease development. Principles and methods of plant disease management. Nature, chemical combination, classification, mode of action and formulations of fungicides and antibiotics.

Practical

Acquaintance with various laboratory equipments and microscopy. Collection and preservation of disease specimen. Preparation of media, isolation and Koch's postulates. General study of different structures of fungi. Study of symptoms of various plant diseases. Study of representative fungal genera. Staining and identification of plant pathogenic bacteria. Transmission of plant viruses. Study of phanerogamic plant parasites. Study of morphological features and identification of plant parasitic nematodes.

2

55

HORTICULTURE

Production Technology for Vegetable and Spices

AG-207-2(1+1)

Theory

Importance of vegetables & spices in human nutrition and national economy, kitchen gardening, brief about origin, area, climate, soil, improved varieties and cultivation practices such as time of sowing, transplanting techniques, planting distance, fertilizer requirements, irrigation, weed management, harvesting and yield, physiological disorders, of important vegetable and spices (Tomato, Brinjal, Chilli, Capsicum, Cucumber, Melons, Gourds, Pumpkin, French bean, Peas; Cole crops such as Cabbage, Cauliflower, Knol-khol; Bulb crops such as Onion, Garlic; Root crops such as Carrot, Raddish, Beetroot; Tuber crops such as Potato; Leafy vegetables such as Amaranth, Palak. Perennial vegetables).

Practical

Identification of vegetables & spice crops and their seeds. Nursery raising. Direct seed sowing and transplanting. Study of morphological characters of different vegetables & spices. Fertilizers applications. Harvesting & preparation for market. Economics of vegetables and spices cultivation.

n 35

W My pi

AGRICULTURAL EXTENSION and COMMUNICATION

Fundamentals of Agricultural Extension Education

AG-208-3(2+1)

Theory

Education: Meaning, definition & Types; Extension Education- meaning, definition, scope and process; objectives and principles of Extension Education; Extension Programme planning-Meaning, Process, Principles and Steps in Programme Development. Extension systems in India: extension efforts in pre-independence era (Sriniketan, Marthandam, Firka Development Scheme, Gurgaon Experiment, etc.) and post-independence era (Etawah Pilot Project, Nilokheri Experiment, etc.); various extension/agriculture development programmes launched by ICAR/Govt. of India (IADP, IAAP, HYVP, KVK, IVLP, ORP, ND, NATP, NAIP, etc.). New trends in agriculture extension: privatization extension, cyber extension/e-extension, market-led extension, farmer-led extension, expert systems, etc. Rural Development: concept, meaning, definition; various rural development programmes launched by Govt. of India. Community Dev.-meaning, definition, concept & principles, Philosophy of C.D. extension administration: meaning and concept, principles and functions. Monitoring and evaluation: concept and definition, monitoring and evaluation of extension programmes; transfer of technology: concept and models, capacity building of extension personnel; extension teaching methods: meaning, classification, individual, group and mass contact methods.

Practical

To get acquainted with university extension system. Group discussion-exercise; handling and use of audio visual equipments and digital camera and LCD projector; preparation and use of AV aids, preparation of extension literature – leaflet, booklet, folder, pamphlet news stories and success stories; Presentation skills exercise; micro teaching exercise; A visit to village to understand the problems being encountered by the villagers/ farmers; to study organization and functioning of DRDA and other development departments at district level; visit to NGO and learning from their experience in rural development; understanding PRA techniques and their application in village development planning; exposure to mass media: visit to community radio and television studio for understanding the process of programme production; script writing, writing for print and electronic media, developing script for radio and television.

B

89

ANIMAL HUSBANDRY AND DAIRYING

FOOD PROCESSING AND SAFETY ISSUES

AG-209 - 3(2+1

Theory

GENERAL: Definition of food, Constituents of food: Water, Carbohydrate, Fat, Protein, Vitamins and Minerals with reference to milk, Detailed composition of milk and colostrum.

FOOD PROCESSING: Pasteurization, Sterilization, Bactofugation, Uperization, Stassanization. U.H.T Pasteurization and Homogenization of milk, Neutralization of milk Cream. Cooling and chilling of milk.

Manufacturing of common dairy product viz. Cream, Butter, Ghee, Dahi, Yoghart, Shrikhand & Icecream.

Manufacturing of Khoa, Evaporated milk, condensed milk, WMP, SMP, Paneer, Cheese, Chhena, Cheddar cheese and Mozzarella cheese (Pizza cheese).

FOOD SAFETY: Definition, Importance, Scope, Hazards and risk Food safety management HACCP, ISO Series, TQM - Concept and need for quality component of TQM Basic water tests.

Practical

- 1. Demostraction of Cream separation.
- Preparation of indigenous dairy product viz, Chhena, Khoa, Paneer, Cream, Ghee, Shrikand.
- 3. Water quality analysis.
- 4. Problem on neutralization of milk and cream.
- 5. Preparation of plants for implementation of HACCP and ISO series,
- Problems on over run.

7. Calculation of Ice cream mix.

W/ My

NON GRADIAL

Human Value and Ethics

AG-210-1(0+1)

Theory

Values and ethics- An introduction. Goal and mission of life. Vision of life. Principles and philosophy. Self exploration. Self awareness. Self satisfaction. Decision making. Motivation. Sensitivity. Success. Selfless Service. Case study of ethical lives. Positive spirit. Body, Mind and Soul. Attachment and Deattachment Spirituality Quotient. Examination.

D

or Will

(hi)